
Defending Against SYN Flood Attack under
Asymmetric Routing Environment

Jianxi Tao∗†§, Li Zhou‡, Zhou Zhou∗†, Rong Yang∗†, Wei Yang∗†, Qingyun Liu∗†

∗Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
†National Engineering Laboratory for Information Security Technology, Beijing, China

‡National Computer Network Emergency Response Technical Team/Coordination Center, Beijing, China
§College of Computer Science and Technology, Beijing University of Posts and Telecommunications, Beijing, China

Corresponding author: taojianxi@nelmail.iie.ac.cn

Abstract—SYN Flood attack is still one of major distributed
denial of service attacks. Any network device or computer system
with connection state table have the possibility of suffering
from this attack. Such attack not only occurs application server
but also network infrastructure. Moreover, under asymmetric
routing environment, unidirectional traffic problem makes it more
difficult to defend against SYN Flood attack. In allusion to
this problem, this paper presents a novel SYN Flood defense
architecture. It consists of a light-weight detection method and
a hierarchical connection management strategy. We verify the
feasibility and effectiveness of our method through experiments
in real network environment. The results show that our proposed
method can mitigate the influence brought by SYN Flood attack.

I. INTRODUCTION

With the development of streaming media business and
the upgrade of user access bandwidth, the volume of Internet
traffic is growing rapidly, and the growth rate stays high for
long time. Unfortunately, as Internet traffic growth, the DDos
attacks occur more and more rampantly. SYN Flood is one of
the most salient problems. Any network device or computer
system with connection state table, such as IDS (Intrusion De-
tection System), IPS (Intrusion Prevention System) etc., have
the possibility of suffering from this attack. With the growing
of scale of SYN Flood attack, nowadays, the connection state
tables of network infrastructure are exhausted easily, they are
not adequate to protect against SYN Flood effectively any
more [1]–[3].

What’s worse, asymmetric routing becomes a universal
phenomenon along with the complex structure of Internet.
Asymmetric routing is a situation where for one reason or
another packets flowing in i.e. TCP connections flow through
different routes to different directions. Consequently, for net-
work security appliance deployed between communicating
parties, it makes original connection state management scheme
invalid under the asymmetric routing environment.

The above observations reveal that we must have a new
view on SYN Flood attack, and find out a more effective

This work is partially supported by The National High Technology
Research and Development Program of China (863 Program), Grant No.
2011AA010703; The National Information Security Program of China (242
Program), Grant No. 2012A99.

defense solution. To this end, this paper presents a SYN
Flood defense architecture for intermediate network security
appliance under asymmetric routing environment. Combined a
light-weight detection method with a hierarchical connection
management strategy, our architecture can mitigate the influ-
ence of SYN Flood attack.

The remainder of this paper is organized as follows.
Section II analyzes the limitations of existing approaches
under asymmetric routing environment. Section III presents
the proposed defense architecture. The experimental results
reported in Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

Many solutions have been proposed for defending against
SYN Flood attack. These solutions can be divided into two
categories, one is that server ensured the authenticity and
legality of the SYN request via some assistant mechanisms,
such as SYN Cookie, SYN Cache, SYN Proxy and SYN Kill;
another is that detect the attack through control bits of TCP
segment, then filter the attack stream based detection result.

Although those schemes mentioned before can mitigate the
damage of SYN Flood attacks to some extent, they can’t con-
ceal their inherent drawbacks and some application scenarios
constraints yet. The first category of schemes can only protect
end system, which provides some service (web site, email, etc.)
for others [4]–[9]. Nevertheless, for network security appliance
deployed between communicating parties, these methods are
far from effectiveness. For the second category, they have a
precondition that they can see all packets of a connection in
both directions [10]–[14]. However, the precondition does not
hold under the asymmetric routing environment, they can’t
apply to the case referred in this paper.

III. DEFENSE ARCHITECTURE

The defense architecture is shown in Fig. 1, traffic acquire
module get traffic from network interface and transmits them
to traffic dispatcher and detector, and then traffic dispatcher
lead them to either of connection management with SYN or
without SYN on the basis of detector’s output, which has two
possibilities: attacked state and normal state. The basic idea
that we create connection state entry without SYN segment
when detector’s output is attacked state is innovative.



Traffic Acquire Module

Traffic Dispatcher D
etecto

r

Connection 
management with 

SYN

Connection 
management 
without SYN

Other Supernatant Module

Fig. 1: Defense Architecture

Normal

Counting Suspicious

Attacked

β < Sl

β∈（Sl，Su）

β > Su

Entropy(Dip) > e

Entropy(Dip) <= e

Sleep(t)

Empty

Start Up

Fig. 2: State Transition Diagram

Before discussing the details of our architecture, we clas-
sify the TCP packets by packet header information as follows:

• SP (SYN packet): the SYN flag is set 1;

• AP (ACK packet): the ACK flag is set 1 and have no
data;

• DP (DATA packet): the ACK flag is set 1 and data
field is not null;

• RFP (RST or FIN packet): the RST flag is set 1 or
the FIN flag is set 1;

• 1stDP (first DATA packet): the DATA packet that is
transferred firstly after connection establishing;

It must be specified that the SYN/ACK packet will be
identified as SP. That’s because, under the asymmetric routing
environment, the traffic acquire module does not always get
the complete three-way handshake packets. But as so long as
either SYN packet or SYN/ACK packet is received, it must
indicates that a connection is establishing. In the similar way,
a connection will be closed when either a RST packet or FIN
packet is received.

A. Detector

Numerous studies show that the traffic generated by normal
Internet behavior of Internet users is stable and smooth.
However, in case of attacked state, many statistical properties
become abnormal. Therefore, we can detect anomaly by sta-
tistical properties. Taking into account of actual feature of the
traffic under the asymmetric routing environment, we choose
syn rate (the rate for which SYN packets account in all packets,
express as β in follows) and destination IP address entropy
(expressed as Entropy(DIP ) as the event to be detected .

The state transition diagram of integrated detection proce-
dure is shown in Fig. 2. It begins in the empty state, which is

HALF_CONNECTION_TABLE

COMPLETE_CONNECTION_TABLE

SP Timeout out
Overflow
Connection setup out

connection setup

DP

AP

RFP

Timeout out
Overflow
Connection close out

Fig. 3: Connection Management with SYN

the original state before starting up. Empty state will transform
into counting state immediately when booting finished. In that
state it can receive the data from traffic acquire module and
collect some statistics information, such as β , Entropy(DIP ),
etc. If β is larger than Su (the upper bound of β), it will
transform into attacked state. If β is less than Sl (the lower
bound of β), it will transform into normal state. Otherwise, β
is between Sl and Su, it will transition to suspicious state. In
that state it will make further judgment that checking the value
of Entropy(DIP ) whether it exceeds the threshold, which is
represented as e in the diagram. If the value of Entropy(DIP )
is less than or equal to e, detector will output attacked state.
If not, it will output normal state. It will stay normal state
or attacked state for a spell in one detection period, and
then transition to counting state automatically. The detection
procedure repeats as above, and it provides output result for
traffic dispatcher continually.

B. Connection Management with SYN

As Fig. 3 shows, two hash tables are used to record the
state of each connection, the one which is called HTC (Half
Connection Table) keeps the half connection information, and
the other which is called CCT (Completed Connection Table)
maintains the state of completed connection. Upon receiving
a TCP packet, we extract four-tuple (source IP address, des-
tination IP address, source port number and destination port
number) from packet header, and then use it to calculate a
hash value, which is used as an index into a hash table. We
used a fixed-length queue which implemented by linked list
to resolve the hash collision. When a connection state entry
is not found in the queue, a new entry is created and inserted
into the tail of queue.

A new connection state entry is added into HCT only when
a SP arrives and the entry with same four-tuple is not existed
in that table. If an AP or DP arrives and the entry with same
for-tuple is found in the HCT, this connection state entry
is moved into CCT, which indicates that a new connection
has established. Otherwise either AP or DP is dropped. The
processing of DP has subtle difference from AP. When a DP
is received, we look it up in CCT before HCT. In case a
connection state entry is found in CCT, the connection state
will be updated directly. But for AP, we searched in HCT
immediately. The arriving of RFP denotes that a connection is
end up, and we move the corresponding connection state out
from both tables.

C. Connection Management without SYN

Previous method can only cope with the normal situation,
but not with the situation suffering from attacking. Attacker
exploits the flaw of three-way handshake to create intentionally



COMPLETE_CONNECTION_TABLE

HEADER_DATA_CACHE_TABLE

DP

RFP

Timeout out
Overflow
Connection close out

Timeout out
Overflow

1stDataArrivedFlg = false 1stDataArrivedFlg = true

Fig. 4: Connection Management without SYN

a large number of half-open connections until the system
memory resources are exhausted. We make a assumption that
there is no three-way handshake, then there is no half-open
connection, so there is no SYN Flood attack. The main role of
three-way handshake is that communicating parties informed
each other that their send-receive functions are intact. Since
network security appliances are neither client nor server, but a
third-party which is situated between communicating parties,
it can ignore three-way handshake and only care about data
transfer process. That’s where our basic idea comes from.
Based on this idea, we develop a connection management
strategy without SYN packets.

However, a key question at this point must be worked out.
It is how to ensure that the first TCP packet with payload
(we call it first data packet in follows, 1stDP for short) has
arrived. 1stDP is important because many application-level
protocol features are able to be collected from it. Therefore,
this question is the key point of connection management
without SYN.

The size of two windows (receive window and send
window) have reached an agreement when the connection
established, and the value of both sizes are limited. The
number of packets sent by client before it received the first
acknowledgement of the first data packet does not exceed the
receive window size of server. To resolve this question, we
design a buffer window to buffered the first N arrived packet
of a connection, and check their sequence numbers and packet
length. If the reassembled data stream has no gap, we think
the 1stDP has arrived.

Supposing that arrival sequence of 1stDP of
connection i is ni, and the size of buffer window is
W . Take W=max{n1, n2, . . . , ni, ni+1, . . .}, then the
1stDPs of all connections must be captured. While
max{n1, n2, . . . , ni, ni+1, . . .} is hard to derive theoretically,
we conjecture that the value of ni is finite. Hence, a
enough large N must be existed, for any i, N ≥ ni,
i.e., N ≥ max{n1, n2, . . . , ni, ni+1, . . .}. Therefore, take
W = N , this question can be resolved. In Section IV-A, the
value of N is probed.

This method is implemented as Fig. 4, which has a little
difference from Fig. 3. CCT is used to maintain the completed
connection state, and HDCT (Header Data Cache Table) is
designed to record sequence number and length of the first N
arrived packets. A new entry of CCT is created when a DP
arrives and there is no same four-tuple connection state entry
in it, and an existing entry is moved out from both tables
when a RFP is received. The element in HDCT is created
along with the creation of connection state entry. Compared
with connection management with SYN, the state entry has

30.0%40.0%50.0%60.0%70.0%80.0%90.0%100.0%
3 4 5 6 7 frequencyx 10000 frequency cumulative

0.0%10.0%20.0%30.0%0 1 2 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%SYN packet rate

Fig. 5: SYN Packet Rate

an additional flag named 1stDPArrivedFlg, which indicates
whether the 1stDP has arrived or not. It is initialized to false.
Before 1stDPArrivedFlg becomes true, for a connection, the
sequence number and packet length of all DPs are put into the
corresponding buffer window until the buffer window is full. If
the buffer window is full and there is no gap according to the
series of sequence number and packet length, 1stDPArrivedFlg
is set to true and this entry in HDCT is eliminated.

Someone may think that the connection management with-
out SYN strategy can deal with all situations, and the strategy
with SYN described in Section III-B can be replaced. Although
strategy without SYN can work in normal situation, its ef-
fectiveness is lower than the strategy with SYN, because the
former strategy needs to check whether the 1stDP have arrived
or not. Therefore, we still use the connection management with
SYN to cope with normal situation.

IV. EXPERIMENTAL RESULTS

In this section, we have carried out some experiments to
evaluate feasibility and performance of our proposed method.
Measuring β and the frequency of out-of-sequence 1stDP is
used to provide evidence for the feasibility of this method.
Refer to the performance of our method, we evaluate it through
two contrast tests in the same network environment, one is the
comparison of packet loss rate under the same background
traffic, and the other is the comparison of processing capacity
in the case of specific packet loss rate.

A. Feasibility Evaluation

The value of β is the key point of our detection method.
We collect statistics from a certain ISP network. The statistical
interval is one second, and it start from 2013/3/17 10:23 to
2013/3/18 11:14. In 24 hours, we get approximately 88000 sets
of data depicted in Fig. 5. As can be seen from this cumulative
histogram, in a day, β is within 5% at about 80% of the time,
the time when β is less than 15% takes up more than 90% of
the time. As a result, β varies within the range between 5%
and 15%. The result is in accordance with Seung-won et al’s
findings [15].

With the purpose of getting the size of buffer window
mentioned in Section III-C, we design this part of experiment.
The data set is captured from a certain ISP network, totally
121G. There are nearly 3,000,000 connections in this data set,
the frequency of out-of-sequence 1stDP is listed in Table I. It
is clear that from the statistics, 99.05328% of the 1stDP have



TABLE I: Frequency of 1stDP Out-of-sequence

Sequence Connection Number Percentage Accumulation percentage

1 2907594 99.05328% 99.05328%

2 24700 0.84146% 99.89473%

3 1894 0.06452% 99.95926%

4 837 0.02851% 99.98777%

5 240 0.00818% 99.99595%

6 118 0.00402% 99.99997%

7 0 0.00000% 99.99997%

> 7 1 0.00003% 100.00000%

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

Time (min)

pa
ck

et
 lo

ss
 r

at
e

 

 

Our Method
General Method

Fig. 6: Packet Loss Rate

arrived in order, the connection which the 1stDP arrives in
first six data packets accounts for 99.99997%. Therefore, we
think that the problem that 1stDP arrived out of order could
be solved reasonably if the size of buffer window is set as 6.

B. Performance Evaluation

According the previous experiment, we set the upper bound
of β as 15% and the lower bound as 5%, the size of buffer win-
dow is set as 6. Additionally, the threshold of Entropy(DIP )
is set as 4, which is proved to be effective by AT&T Lab [16].

From a certain ISP network node, we mirror the traffic,
which contains attack traffic, and led the same traffic into two
systems, the one uses our defense method and the other uses
normal method, which is similar to the method described in
Section III-B. The packet loss rate of both systems are shown
in Fig. 6. Obviously, the packet loss rate of the system with
our proposed method is lower than the system with normal
method. Note that, during the test, the event that our detector
outputs attacked state occurs 28 times.

In the last experiment, we inject concurrently real traffic
including attack traffic into the two systems, the volume of traf-
fic increased gradually until the packet loss rate reached ten-
thousandth. When the packet loss rate reaches ten-thousandth,
the volume of traffic injected to the system with our method is
2.6 Gbps, but that of system with normal method is 0.9 Gbps
less than ours.

To sum up, our approach is able to solve the problem that
existing approach can’t defend against the SYN Flood attack
under the asymmetric routing environment, and improve the
processing capacity of network security appliance deployed
between communicating parties.

V. CONCLUSION AND FUTURE WORK

In allusion to the problem that existing method can’t
effectively protect network infrastructure under the asymmetric
routing environment from SYN Flood attack, this paper pre-
sented a method on basis of light weight detection and hierar-
chical connection management strategy. The main contribution
of this paper is that a new idea that connection management
without SYN segment. Experimental results show that our
proposed method can filter SYN Flood traffic, and mitigate
the pressure of network infrastructure.

In the future, we will apply our approach to real network
and improve the detection method. In addition, we plan to give
theoretical evidence for the conjecture that the first packet with
payload arrives in the first N packets definitely.

REFERENCES

[1] “High bandwidth ddos attacks are now common, researcher says,” http:
//www.computerworld.com/s/article/9232487, 2012.

[2] “Prolexic quarterly global ddos attack report q4 2012,” http://www.
prolexic.com/knowledge-center-ddos-attack-report-2012-q4.html,
2012.

[3] “Summary of china’s internet network security situation 2012,” http:
//www.cert.org.cn/publish/main/46/2013/20130320093925791767941/
20130320093925791767941 .html, 2013.

[4] W. M. Eddy, “Tcp syn flooding attacks and common mitigations,” 2007.
[5] D. J. Bernstein, “Syn cookies,” http://cr.yp.to/syncookies.html.
[6] A. Zuquete, “Improving the functionality of syn cookies,” in Advanced

Communications and Multimedia Security. Springer, 2002, pp. 57–77.
[7] B. Hang, R. Hu, and W. Shi, “An enhanced syn cookie defence method

for tcp ddos attack,” Journal of Networks, vol. 6, no. 8, pp. 1206–1213,
2011.

[8] J. Lemon et al., “Resisting syn flood dos attacks with a syn cache.” in
BSDCon, vol. 2002, 2002, pp. 89–97.

[9] Z. Wu and Z. Chen, “A three-layer defense mechanism based on web
servers against distributed denial of service attacks,” in Communications
and Networking in China, 2006. ChinaCom’06. First International
Conference on. IEEE, 2006, pp. 1–5.

[10] H. Wang, D. Zhang, and K. G. Shin, “Syn-dog: Sniffing syn flooding
sources,” in Distributed Computing Systems, 2002. Proceedings. 22nd
International Conference on. IEEE, 2002, pp. 421–428.

[11] T. Nakashima and S. Oshima, “A detective method for syn flood
attacks,” in Innovative Computing, Information and Control, 2006.
ICICIC’06. First International Conference on, vol. 1. IEEE, 2006,
pp. 48–51.

[12] W. Chen and D.-Y. Yeung, “Defending against tcp syn flooding attacks
under different types of ip spoofing,” in Networking, International
Conference on Systems and International Conference on Mobile Com-
munications and Learning Technologies, 2006. ICN/ICONS/MCL 2006.
International Conference on. IEEE, 2006, pp. 38–38.

[13] C. Sun, C. Hu, Y. Tang, and B. Liu, “More accurate and fast syn flood
detection,” in Computer Communications and Networks, 2009. ICCCN
2009. Proceedings of 18th Internatonal Conference on. IEEE, 2009,
pp. 1–6.

[14] H. Wang, D. Zhang, and K. G. Shin, “Detecting syn flooding attacks,”
in INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, vol. 3.
IEEE, 2002, pp. 1530–1539.

[15] S.-w. Shin, K.-y. Kim, and J.-s. Jang, “Analysis of tcp syn traffic:
an empirical study,” in Advanced Communication Technology, 2005,
ICACT 2005. The 7th International Conference on, vol. 1. IEEE,
2005, pp. 652–657.

[16] W. K. Ehrlich, K. Futamura, and D. Liu, “An entropy based method to
detect spoofed denial of service (dos) attacks,” in Telecommunications
Modeling, Policy, and Technology. Springer, 2008, pp. 101–122.


